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FLOW IN THE HYPERSONIC BOUNDARY LAYER ON A FINITE TRIANGULAR 

WING IN THE PRESENCE OF AN ANGLE OF ATTACK 

G. N. Dudin UDC 533.6.011.55 

The investigation of three-dimensional viscous gas flows at hypersonic flight veloci- 
ties is of importance to the determination of the aerodynamic characteristics, it has been 
established in numerous experimental studies (see Ill, for instance) that the nature of the 
flow in the boundary layer on flat delta wings depends substantially on the msgnitude of the 
hypersonic interaction parameter X = M~Re~/2, where M~., is the free stream Mach number, and 
Re = p=U~L/~o is the Reynolds number determined from values of the density and velocity in 
the unperturbed stream, the wing length, and the viscosity coefficient at the stagnation 
temperature. Two limiting flow regimes can be examined here. In the weak interaction re- 
gime (X ~ 0.I) even for a small angle of attack vortices ['2] which drift downstream, occur 
within the boundary layer on the leeward side of a delta wing, and their interaction with the 
body surface results in an increase in friction and heat flux. In the strong viscous inter- 
action regime (X ~ I) [3], at least up to moderate angles of attack, attached flow is real- 
ized over the whole wing. However, it should be noted that the nature of the low in a region 
near the apex of the wing is identical in both cases since the parameter is X ~ ! there (the 
Reynolds number should be calculated relative to the length of the domain under considera- 
tion). The flow around a thin delta plate in the strong viscous interaction regime has been 
investigated theoretically at zero angle of attack in [4-7]. Examination of the flow around 
a semiinfinite triangular plate permits reduction of the boundary value problem to a self- 
similar problem, for whose solution the methods developed for two-dimensional problems are 
applicable. However, the system remains three-dimensional in the consideration of the flow 
around a delta wing at an angle of attack in the strong viscous interaction regime. A solu- 
tion is obtained in [8] for the system of Navier--Stokes equations near a semiinfinite delta 
wing at an angle of attack, but an assumption is made here that the gradients in the radial 
direction are much less than in the others, and the boundary-va!ue problem is reduced to a 
self-similar problem. 

I. The flow of a hypersonic stream of viscous gas around a finite delta wing at an angle 
of attack ~~ is considered in this paper under the assumption that the perturbed part of the 
flow contains a stream inviscid in a first approximation, which is described by the hyperson- 
ic theory of small perturbations [9] and the viscous boundary layer. ]it Js assumed that the 
angle of attack is small (~~ < T) and such that the assumption of the hypersonic theory of 
small perturbations is always satisfied 

' �9 ( 1 . 1 )  

w h e r e  �9 = ( s / R e ) ~ / ~  i s  t h e  c h a r a c t e r i s t i c  d i m e n s i o n l e s s  b o u n d a r y - l a y e r  t h i c k n e s s  ( s  = t a n  B, 
B is the half-angle at the wing apex). The plus sign in (i.I) corresponds to flow around 
the lower (windward) wing surface, and the minus sign around the upper (leeward) surface. 
The Cartesian coordinate system whose origin is at the apex of the delta wing (the x ~ axis 
is directed along the axis of symmetry, the z ~ axis along the span, and the yO axis along 
the normal to the wing surface) is presented in Fig, i. It is assumed that boundary-layer 
interaction with the external hypersonic stream is strong (X > i) on the whole wing. The 
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solution of the complete boundary-value problem includes taking account of the flow in the 
wake which is formed behind the wing [i0]; however, in this paper, in order not to consider 
this flow, the boundary condition is given on the trailing edge~of the delta wing. It should 
here be kept in mind that a series expansion of~the solution in the neighborhood of the lead- 
ing edge contains an arbitrary function for the flow around a plate that is not cold since 
the flow is precritical [i0], and hence, it is also necessary to give a function for the se- 
lection of a unique solution of the boundary-value problem on the trailing edge. 

In conformity with the usual estimates for the boundary layer in a hypersonic stream 
[9], the following dimensionless variables are introduced: uU~, wU~, VWTS-IU~, projections 

2 2 
of the total velocity on the axes x ~ = xL, z ~ = zsL, yO = yzL, pz20~, density; pz 0~U~, 
pressure; gU~/2, stagnation enthalpy; ~o, dynamic coefficient of viscosity; and ~eZL, 
boundary-layer displacement thickness. Furthermore, the case of a linear dependence of the 
viscosity on the temperature is considered. Substitution of the variables mentioned into 
the Navier--Stokes equations and passing to the limit Re § result in the spatial boundary- 
layer equations which have the following form in the A. A. Dorodnitsyn variables 

au , ~)tz Ou s Op 
Sit --=.-- ~-  U -" lP - -  

ox ~ Oz p ~z 

i')w ijw ~ au, l Op 
su ~ -4- v -SY.- -= w - a T  = 0 0 ~  

s'l~ - - -  ~- v :- u:.--=- == ~ [Ltp 

~ PP ~ , 

,:jj~ PP , 

t - - a  a ( u - - r w  2) 

-d o~ ' 
(1.2) 

-- 6 - 0, P ~,--i g_ u 2_w ~ s o.~ #Z iJz " ' ' ~ :g-- u ~ - w e ,  

Y 

"' 6E 0s 
: J pd!/, t, : p v w  -i- w o--~-~ @ s u  ox 

O 

w h e r e  o i s  t h e  P r a n d t l  n u m b e r ,  a n d  y i s  t h e  r a t i o  o f  t h e  s p e c i f i c  h e a t s .  T h e  b o u n d a r y  c o n d [ -  
t i o n s  f o r  i z l ~  x ,  0 ~  x ~ l :  u = v = w = O, g = gw (X = 0 ) ;  u § 1 ,  w § O, g § 1 ( t  §  
To s o l v e  t h i s  s y s t e m  o f  e q u a t i o n s  i t  i s  n e c e s s a r y  t o  know t h e  p r e s s u r e  d i s t r i b u t i o n  w h i c h  i s  
n o t  g i v e n  and  s h o u l d  be  d e t e r m i n e d  d u r i n g  t h e  p r o c e s s  o f  s o l v i n g  t h e  p r o b l e m  ( 1 . 2 )  i n  c o n -  
j u n c t i o n  w i t h  t h e  e q u a t i o n s  f o r  t h e  e x t e r n a l  i n v i s c i d  f l o w  d e s c r i b e d  b y  t h e  h y p e r s o n i c  t h e o r y  
of smali perturbations. The simultaneous solution of these two systems of equations for the 
viscous and inviscid flows is fraught with great difficulties. Since the flow around a wing 
with the span s ~ 0(i) is considered in this paper, and the theory of strips [9] is valid 
for the external inviscid flow, then the approximate formula for a tangent wedge [9] can be 
used to determine the pressure, for example, in a form valid for M~(T • a ~ >> i (s ~ = aT, 
O~-~d  < i): 

, + 1  ( a6~ )2, 
P : - - 5 - -  \ -~ .C  4 - ~  (1.3) 

where 6 e is the boundary-layer displacement thickness determined by the expression [4] 

6~ .~-:! .~  u 2 _  = Z?p ~ ( g - -  w 2 ) d L  ( 1 , 4 )  

0 

2. For the numerical solution of the boundary-value problem (1.2)-(1.4), the singulari- 
ties in the behavior of the flow function should be taken into account in the neighborhood of 
the delta wing apex. To do this, the following variables are introduced 
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x =: x ,  z = x O ,  k - x i ! 4 k * ,  p = x - i , ~ - p  * ( x ,  0 ) ,  

p = x-~;'o-p* (x, k* 0),  6~ = xa.:4:~ (x ,  0 ) ,  v = z-a,"~ v*  - -  x u s  o~ :" 

W i t h o u t  p r e s e n t i n g  t he  c o m p l e t e  s y s t e m  o f  e q u a t i o n s  i n  t h e  v a r i a b l e s  ( 2 . 1 ) ,  
t h a t  t h e  e x p r e s s i o n  f o r  t he  p r e s s u r e  ( 1 . 3 )  t a k e s  t h e  fo rm 

- - a  x =  6: ~- . :r -7;  7 . . . .  0 % - ~ - # _  / 

( 2 . 1 )  

let us note 

For ~ ~fi-0 and x > 0 on the wing surface, the pressure turns out to be a function of x and 
because of the presence of the term (xx :/d in this expression, while the flow in the boundary 
layer depends on three variables x, 8 and X. Therefore, even for a semiinfinite wing, in 
the presence of an angle of attack the system of equations (1.2)-(1.4) in the variables (2.1) 
remains three-dimensional, in contrast to the case of flow around a wing at a zero angle of 
attack when the system of three-dimensional boundary-layer equations (1.2)-(1.4) reduces to 
a system dependent just on the two independent variables ~ and %* [7]. To take account of 
the singularities in the behavior of the flow function in the strong viscous interaction re- 
gime in the neighborhood of the leading edges of the delta wing (0 = • we introduce the 
variables 

-~ , f -  '2.g 
0-) Pot x, 0), k * = V  ~ ( i - ~  ,:~,i ,  : : = ( t -  ' -~ '~ ' 

P,~ ( i~, l I-- S U 0 ) ~ '1 ] ( 2 "  2 )  :--- ...... ' , ' .  o ) ,  - -  oW. 

Taking (2.1) and 

For 

(2.2) into account, system (1.2)-(1.4) 
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takes the form 
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l Ol -%" I and 0 ~ x ~I" I the boundary conditions are: 

(2.3) 

== " { ~ " -3 ----~ --e . . . . .  > u-=w ~'~ = O, g==&r(q =: b, u i,u; O, g t(',l co). 

The system of partial differential equations (2.3) describes the flow in a three-dimen- 
sional boundary layer on a delta wing of finite length at an angle of attack in the strong 
viscous interaction regime. It should be noted that at the wing apex (x = O) the terms 
containing the variable x in system (2.3) drop out and the boundary-value problem turns out 
to be dependent on just two independent variables 8 and no For the values 8 = • i 
of the transverse coordinate at the wing leading edges, system (2.3) degenerates into a 
system of ordinary differential equations. The domain of integration of the system (2.3) is 
a rectangular parallelepiped. To solve the boundary-value problem (2~ it it first neces- 
sary to solve the system of ordinary differential equations on the wing leading edges, then 
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by using these solutions as boundary conditions, to solve the system of partial differential 
equations dependent on two variables and describing the flow at the delta wing apex. Final- 
ly, taking account of the boundary condition on the wing trailing edge, the pressure distri- 
bution, say, and also taking account of the solution obtained at the wing apex and at its 
leading edges, the system of three-dimensional boundary-layer equations (2.3) is solved. 
Let us note that for a given pressure distribution p~(e) on the wing trailing edge, the 
displacement thickness Ae(X, 8) obtained because of solving the complete boundary value 
problem should satisfy the relationship 

(1 0 ~) .'k~ i ~ ( l - - 0 ~ } - 7 ~ ,  f- - - .  [ ( i  .... Oe) O0 .... g -  [ 7  3 ] "~" (t .... g (o) (2.4) 

for the value x = I of the longitudinal coordinate. In solving the total boundary-value 
problem including the wake, the unique solution should be selected from the condition of 
compliance with certain relationships presented in [i0] on the "sonic" surface on which the 
transition into the post-critical regime occurs. 

To solve the systems of differential equations mentioned, the method of finite differ- 
ences is used. Second-order difference schemes in A~ and first or second order in Ae and 
Ax are used to approximate the equations, where A~, Ae, Ax are the spacings along the co- 
ordinates ~, 8, x. The derivatives with respect to the coordinates e and x in the equations 
are approximated in the difference scheme with the sign preceding them taken into account. 
The systems of difference equations for the functions u, w, and g are solved successively 
by the method of scalar factorization, one after the other. The system of nonlinear equa- 
tions is here replaced by a linear system of difference equations in each iteration, where 
the relaxation values from the preceding iteration are used for the linearization [ii]. The 
difference analog of the continuity equation reduces to a first-order difference equation 
which was always approximated to second-order accuracy. 

The iteration process is the following. For a certain approximate pressure distribu- 
tion po(x, 8), which agrees with the given p~(e) at x : i, the motion and energy equations 
of (2.3) are solved. Since central differences for x > 0 were used to take account of up- 
stream transmission of perturbations to approximate the quantities ~po/~x, then this pres- 
sure gradient is not known for x = 1 on the last layer and is selected from the condition 
of satisfying the relationship (2.4) during the solution of the complete boundary-value 
problem (2.3). The values obtained for the flow functions u, w, and g and for the pressure 
po(x, 8) are used to determine the displacement thickness A e. Then from the tangent wedge 
formula a new pressure is found, and the iteration process is continued until the required 
accuracy is achieved. As numerical computations have shown, both the flow functions u, w, 
and g and the pressure Po must be relaxed for the stability of the difference boundary-value 
problem, where the relaxation coefficients turned out to be on the order of opt = 0.2-0.5, 
respectively, for u, w, and g, and q~a = 0.02-0.05 for Po. It should be noted that the pres- 
sure for the value x = 1 was naturally not relaxed. The iterations were terminated when 
the maximum difference in two successive iterations for the quantities po(x, 8) (as the most 
slowly convergent quantity) and the difference between the pressure given on the trailing 
edge p~(O) and the pressure calculated there po(x = i, 8), became less than i0 -~. Here 
300-400 iterations were required for this. 

3. As an illustration, the flow around a delta wing on whose trailing edge the pressure 
identically equals the pressure corresponding to the flow around a semiinfinite delta wing 
with the value of the coordinate x = 1 and zero angle of attack [7] is considered in this 

paper. 

In the numerical computations it was assumed that s = 2 (the sweepback angle ~27~ y = 
1.4, o = 0.71; gw = 0.5, and a = O, 0.3. Results of a computation for the pressure along the 
axis of symmetry of the wing (z = O) are represented in Fig. I. The values of p with a = 
-0.3 correspond to a pressure distribution on th~ upper wing surface (curve 3) and with 
a = 0.3 to the lower surface (curve i). Curve 2 (~ = 0) corresponds to a flow at zero angle 
of attack. As should have been expected, the pressure values on the wing &eeward surface is 
considerably greater than on the windward surface; thus, for x = 0.5 the pressure on the low- 
er side is almost twice as great as on the upper. As numerical computations showed, a change 
in the magnitude of the pressure at the trailing edge exerts influence on the upstream flow 
at = 30-40% of the wing chord. Therefore, the pressure distribution on the wing surface from 
the apex to the value x = 0.6 of the longitudinal coordinate depends only on the angle of 
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attack (and also the quantities s, y, ~ and gw ), but is independent of the pressure distri- 
bution given at the trailing edge if this given pressure is not so large as to cause boundary- 
layer separation at the wing. The distribution of the boundary-layer displacement thickness 
6e(X , z) on a wing over which the flow is at the angle of attack a = 0.3 is represented in 
Fig. 2. As was also noted in experimental investigations of flows in a strong viscous inter- 
action regime [3], a significant growth in 6e(X , z) occurs on the leeward side and its diminu- 
tion on the windward side. Especially strong changes in the displacement thickness occur 
in the neighborhood of the plane of symmetry. Results of a computation of the friction 
stress coefficient in the longitudinal direction m = ~u/~YI,, and of the thermal flux m~ = 
~g/~yIw on the wlng surface along the axzs of symmetry z = 0 are presented In Fig. 3. ~alues 
of the-thermal flux and the friction stress coefficient on the windward side of the wing 
(~ = 0.3) considerably exceed their magnitude on the leeward side of the wing (~ = --0.3). 
A sharp growth in the quantity Tu, related to acceleration of the stream, is observed on the 
wing lower surface in the neighborhood of the Sailing edge. The weak influence of the 
magnitude of the pressure given on the trailing edge on the thermal flux distribution should 
also be noted. 

Distributions of p, ru, Tg, and the friction stress coefficient in the transverse direc- 
tion T w = ~w/~YIW over the wing space are represented in Figs. 4 and 5 for the value x = 0.6 
of the longitudinal coordinate. This value of the coordinate x is chosen from the conditions 
noted above. The dashed line in Fig. 4denotes the value of the pressurep (x= I)at the trail- 
ing edge at which all the computations presented in this paper were performed. It must be 
noted that the influence of the magnitude of the angle of attack on the friction stress coef- 
ficient in the transverse direction T w is comparatively weak, at least for the value [0! > 
0.2. However, near the plane of symmetry 101~ 0.I, the quantity m w on the windward side 
considerably exceeds its value on the leeward side. 
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STABILITY OF A PLANE CRYSTALLIZATION FRONT MOVING AT 

CONSTANT VELOCITY 

L. G. Badratinova UDC 532.78:536.421.4 

i. In an x, y, z coordinate system coupled to a plane unperturbed front (the x axis 
is directed into the melt and the y, z axes are along the interfacial surface), the crystal- 
lization process of a dilute binary alloy is described by the equations 

for d~" > /(!1. ~, t) f)T,/Ot ! v ~ . v T  1 .:  7~Al'~, 
3c1'0I -{- v i - v c i  :-: DAel. V'Vi : O, 

& ' / b Z q - i v ~ . V ) V ,  : v A v j - - V !  ~ ? , q - g ,  g : : : ( - - g ,  0, O); 

(i.i) 

for x . ~ f / ( y , z , ~ )  OT..~Ot-- F,zfdF=Ox)=- z zAT 2 

with local phase equilibrium conditions [i] 

(1.2) 

x = / ( y ,  z, t) Tx "= T~ = mc 1-F To-F To?K, ( 1 . 3 )  

no  t a n g e n t i a l  c o m p o n e n t  o f  t h e  m e l t  v e l o c i t y  o n  t h e  f r o n t ,  a n d c o n t i n u i t y  o f  t h e  e n e r g y  and  
m a s s  f l u x e s  [2]  o f  b o t h  m e l t  c o m p o n e n t s  d u r i n g  p a s s a g e  t h r o u g h  t h e  i n t e r f a c e  x = f ( y ,  z ,  t ) :  

(• T~ -- x l v T 1 ) n  = -- plA(vl  - -  U)a,  
V1.1: = O, pl(Vl - -  U)n = p2(v= - -  U)n,  ( 1 . 4 )  

Oplp[1Vcln  = (l  - -  k) c 1 (-v 2 - -  U)n .  

Here vl, p, and ci are the melt velocity, pressure, and impurity concentration (mea- 
sured in weight fractions), Tj (j = i, 2) are the temperatures of the medium~ The subscript 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 3, pp. 113-120, May-June, 1983. Original article submitted May 17, 1982. 

388 0021-8944/83/2403-0388507.50 �9 1984 Plenum Publishing Corporation 


